14 research outputs found

    Deep convolutional neural networks for segmenting 3D in vivo multiphoton images of vasculature in Alzheimer disease mouse models

    Full text link
    The health and function of tissue rely on its vasculature network to provide reliable blood perfusion. Volumetric imaging approaches, such as multiphoton microscopy, are able to generate detailed 3D images of blood vessels that could contribute to our understanding of the role of vascular structure in normal physiology and in disease mechanisms. The segmentation of vessels, a core image analysis problem, is a bottleneck that has prevented the systematic comparison of 3D vascular architecture across experimental populations. We explored the use of convolutional neural networks to segment 3D vessels within volumetric in vivo images acquired by multiphoton microscopy. We evaluated different network architectures and machine learning techniques in the context of this segmentation problem. We show that our optimized convolutional neural network architecture, which we call DeepVess, yielded a segmentation accuracy that was better than both the current state-of-the-art and a trained human annotator, while also being orders of magnitude faster. To explore the effects of aging and Alzheimer's disease on capillaries, we applied DeepVess to 3D images of cortical blood vessels in young and old mouse models of Alzheimer's disease and wild type littermates. We found little difference in the distribution of capillary diameter or tortuosity between these groups, but did note a decrease in the number of longer capillary segments (>75μm>75\mu m) in aged animals as compared to young, in both wild type and Alzheimer's disease mouse models.Comment: 34 pages, 9 figure

    What Patients Want to Know about Imaging Examinations: A Multiinstitutional U.S. Survey in Adult and Pediatric Teaching Hospitals on Patient Preferences for Receiving Information before Radiologic Examinations

    Get PDF
    Purpose To identify what information patients and parents or caregivers found useful before an imaging examination, from whom they preferred to receive information, and how those preferences related to patient-specific variables including demographics and prior radiologic examinations. Materials and Methods A 24-item survey was distributed at three pediatric and three adult hospitals between January and May 2015. The χ2 or Fisher exact test (categorical variables) and one-way analysis of variance or two-sample t test (continuous variables) were used for comparisons. Multivariate logistic regression was used to determine associations between responses and demographics. Results Of 1742 surveys, 1542 (89%) were returned (381 partial, 1161 completed). Mean respondent age was 46.2 years ± 16.8 (standard deviation), with respondents more frequently female (1025 of 1506, 68%) and Caucasian (1132 of 1504, 75%). Overall, 78% (1117 of 1438) reported receiving information about their examination most commonly from the ordering provider (824 of 1292, 64%), who was also the most preferred source (1005 of 1388, 72%). Scheduled magnetic resonance (MR) imaging or nuclear medicine examinations (P < .001 vs other examination types) and increasing education (P = .008) were associated with higher rates of receiving information. Half of respondents (757 of 1452, 52%) sought information themselves. The highest importance scores for pre-examination information (Likert scale ≥4) was most frequently assigned to information on examination preparation and least frequently assigned to whether an alternative radiation-free examination could be used (74% vs 54%; P < .001). Conclusion Delivery of pre-examination information for radiologic examinations is suboptimal, with half of all patients and caregivers seeking information on their own. Ordering providers are the predominant and preferred source of examination-related information, with respondents placing highest importance on information related to examination preparation

    Comparison of brain vasculature network characteristics between wild type and Alzheimer’s disease mice using topological metrics

    Get PDF
    There is a strong clinical correlation between Alzheimer’s disease (AD) and microvascular disorders. In mouse models of AD, our lab has found blood flow dysfunction in brain capillaries, suggesting the need to study the function of vascular networks at the capillary level. However, the ability to deliver blood flow continuously to all neurons also depends on connections between vessels, requiring that we also characterize the topology of brain vascular networks. Here, we use graph theory and topological metrics to characterize the connectivity of brain capillary networks in AD and control mice

    Neutrophil adhesion in brain capillaries reduces cortical blood flow and impairs memory function in Alzheimer’s disease mouse models.

    Get PDF
    Cerebral blood flow (CBF) reductions in Alzheimer’s disease patients and related mouse models have been recognized for decades, but the underlying mechanisms and resulting consequences for Alzheimer’s disease pathogenesis remain poorly understood. In APP/PS1 and 5xFAD mice we found that an increased number of cortical capillaries had stalled blood flow as compared to in wild-type animals, largely due to neutrophils that had adhered in capillary segments and blocked blood flow. Administration of antibodies against the neutrophil marker Ly6G reduced the number of stalled capillaries, leading to both an immediate increase in CBF and rapidly improved performance in spatial and working memory tasks. This study identified a previously uncharacterized cellular mechanism that explains the majority of the CBF reduction seen in two mouse models of Alzheimer’s disease and demonstrated that improving CBF rapidly enhanced short-term memory function. Restoring cerebral perfusion by preventing neutrophil adhesion may provide a strategy for improving cognition in Alzheimer’s disease patients

    Data from: Deep convolutional neural networks for segmenting 3D in vivo multiphoton images of vasculature in Alzheimer disease mouse models

    No full text
    The health and function of tissue rely on its vasculature network to provide reliable blood perfusion. Volumetric imaging approaches, such as multiphoton microscopy, are able to generate detailed 3D images of blood vessels that could contribute to our understanding of the role of vascular structure in normal physiology and in disease mechanisms. The segmentation of vessels, a core image analysis problem, is a bottleneck that has prevented the systematic comparison of 3D vascular architecture across experimental populations. We explored the use of convolutional neural networks to segment 3D vessels within volumetric in vivo images acquired by multiphoton microscopy. We evaluated different network architectures and machine learning techniques in the context of this segmentation problem. We show that our optimized convolutional neural network architecture, which we call DeepVess, yielded a segmentation accuracy that was better than both the current state-of-the-art and a trained human annotator, while also being orders of magnitude faster. To explore the effects of aging and Alzheimer's disease on capillaries, we applied DeepVess to 3D images of cortical blood vessels in young and old mouse models of Alzheimer's disease and wild type littermates. We found little difference in the distribution of capillary diameter or tortuosity between these groups, but did note a decrease in the number of longer capillary segments (>75μm) in aged animals as compared to young, in both wild type and Alzheimer's disease mouse models. These data support these findings.This work was supported by the European Research Council grant 615102 (NN), the National Institutes of Health grant AG049952 (CS), the National Institutes of Health grants R01LM012719 and R01AG053949 (MS), and the National Science Foundation Cornell NeuroNex Hub grant (1707312, MS and CS)

    Deep learning in chest radiography: Detection of findings and presence of change.

    No full text
    BACKGROUND:Deep learning (DL) based solutions have been proposed for interpretation of several imaging modalities including radiography, CT, and MR. For chest radiographs, DL algorithms have found success in the evaluation of abnormalities such as lung nodules, pulmonary tuberculosis, cystic fibrosis, pneumoconiosis, and location of peripherally inserted central catheters. Chest radiography represents the most commonly performed radiological test for a multitude of non-emergent and emergent clinical indications. This study aims to assess accuracy of deep learning (DL) algorithm for detection of abnormalities on routine frontal chest radiographs (CXR), and assessment of stability or change in findings over serial radiographs. METHODS AND FINDINGS:We processed 874 de-identified frontal CXR from 724 adult patients (> 18 years) with DL (Qure AI). Scores and prediction statistics from DL were generated and recorded for the presence of pulmonary opacities, pleural effusions, hilar prominence, and enlarged cardiac silhouette. To establish a standard of reference (SOR), two thoracic radiologists assessed all CXR for these abnormalities. Four other radiologists (test radiologists), unaware of SOR and DL findings, independently assessed the presence of radiographic abnormalities. A total 724 radiographs were assessed for detection of findings. A subset of 150 radiographs with follow up examinations was used to asses change over time. Data were analyzed with receiver operating characteristics analyses and post-hoc power analysis. RESULTS:About 42% (305/ 724) CXR had no findings according to SOR; single and multiple abnormalities were seen in 23% (168/724) and 35% (251/724) of CXR. There was no statistical difference between DL and SOR for all abnormalities (p = 0.2-0.8). The area under the curve (AUC) for DL and test radiologists ranged between 0.837-0.929 and 0.693-0.923, respectively. DL had lowest AUC (0.758) for assessing changes in pulmonary opacities over follow up CXR. Presence of chest wall implanted devices negatively affected the accuracy of DL algorithm for evaluation of pulmonary and hilar abnormalities. CONCLUSIONS:DL algorithm can aid in interpretation of CXR findings and their stability over follow up CXR. However, in its present version, it is unlikely to replace radiologists due to its limited specificity for categorizing specific findings
    corecore